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Abstract 

The current investigation elucidates the impact of velocity slip and mass transfer phenomena on the 

magnetohydrodynamic (MHD) flow of upper-convected Maxwell (UCM) fluids traversing a stretchable porous 

substrate. The fundamental partial differential equations governing this flow problem are transformed into 

ordinary differential equations by applying similarity transformations. The numerical solutions for the resultant 

non-linear boundary value problem are derived by employing the Successive Linearization Method (SLM) 

utilizing Matlab software. The velocity and concentration profiles for extensive ranges of the governing 

parametric variables are presented, and their behavior is analyzed through graphical representations. It is 

anticipated that the results obtained from this study will provide valuable insights for practical applications and 

will establish connections with existing scholarly literature.  
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Introduction

 

The Earth is replete with a diverse array of examples pertaining to the flow characteristics of non-Newtonian 

fluids. In recent times, the investigation of such fluids has captivated the attention of researchers and has 

experienced significant growth over the past two decades. Undoubtedly, the governing equations developed for 

non-Newtonian fluids are characterized by their strong non-linearity, high order, and complexity, often surpassing 

that of the Navier-Stokes equations. The flows of non-Newtonian fluids occur across a broad spectrum of 

applications, including industrial processes such as the production of synthetic fibers, the extrusion of molten 

plastics, and operations in oil and gas well drilling, as well as certain flow scenarios involving polymer solutions. 

A vast array of liquids and commercial applications has prompted researchers to explore the behavior of non-

Newtonian fluids. Non-Newtonian fluids exhibit distinct properties in comparison to their Newtonian 

counterparts. It is imperative to examine their flow behavior to gain a comprehensive understanding of non-

Newtonian fluids and their applications. Researchers have predominantly focused on the analysis of second and 

third-grade fluid models, which have not provided adequate predictions regarding the effects of stress relaxation. 

Anwar et al., (2020) recorded the impact of the ramped wall temperature and ramped wall velocity for an unsteady 

MHD convective Maxwell fluid flow. MHD Suspended SWCNTs and MWCNTs Based Maxwell Nanofluid 

Flow with Bio-Convection and Entropy Generation Past a Permeable Vertical Cone were examined by Shah et 

al. (2020) for their microstructure and inertial characteristics. The MHD swirling flow and heat transfer in 
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Maxwell fluid powered by two coaxially rotating disks with variable thermal conductivity were investigated by 

Ahmed et al. (2019), Chen et al. (2019)  looked into the unsteady boundary layer flow of a viscoelastic MHD 

fluid using a double fractional Maxwell model. The forced convective Maxwell fluid flow over a spinning disk 

under the motion of thermophoretic particles was examined by Shehzad et al. (2020). Various researchers have 

contributed to the understanding of non-Newtonian fluids through stretchable surfaces in different flow scenarios 

as evidenced by references (Sami Ullah et al. 2024, Anwar et al. 2020, Anwar et al. (2023).  

The MHD flow over a permeable medium plays a significant role in mechanical and agricultural technologies as 

well as in the extraction of gasoline from fossil fuels in the petroleum industry. MHD tools have found widespread 

applications in the biomedical and material sciences, and MHD micro-fluids have been widely used in many 

grasslands. For instance, Daniel et al. (2017) conducted entropy analysis on magnetic hydrodynamic nanomaterial 

fluid flowing considering radiative chemical reactions and viscous dissipations through numerical methods. They 

also explored MHD flow adopting the nanofluid model with mixed convection and partial slip conditions, among 

other variations. Mulinti and Pallavarapu (2022) investigated the flow dynamics of an unsteady compressible 

magnetohydrodynamic fluid influenced by thermal radiation and situated within a porous subsurface, factoring 

in the presence of chemical reactions. The works of Wakif et al. (2022), Reddy et al. (2022), and Yahaya et al. 

(2022) also contributed insights into the influence of MHD and nanofluids under diverse conditions. Recent 

scholarly discussions have centered on the magnetic hydrodynamic model under specific assumptions, as 

referenced in works (Mahabaleshwar et al. 2023, Anwar et al. 2022, Alkasasbeh et al. 2023, Anwar et al. 2022). 

We have demonstrated a strong interest in the analysis of two-dimensional flows for mass transportation in recent 

years. The mechanisms of heat transmission and fluid flow have significant uses in research and engineering. One 

constitutive connection between shear stress and rate of strain is insufficient to study the various rheological 

characteristics of non-Newtonian fluids. Any boundary layer's stress relaxation may be predicted using the 

Maxwell phenomenon, which also removes the influence of shear-dependent viscosity. An unstable boundary 

layer is crucial in a number of engineering challenges, including the process of periodic fluid motion and other 

types brought on by extra time-dependent elements that would impact the fluid motion and boundary layer 

separation. Makinde (2011) investigated the interaction of thermal radiation, mixed convection, and a chemical 

reaction. Anwer and Makinde (2011) investigated the species transfer and viscoelastic flow into a Darcian high-

porous channel. The peristaltic propulsion for a Jeffrey nanofluid, as well as the effects of thermal radiation and 

chemical reactions, were investigated by Abbas et al. (2019) The combination of heat and mass transfer for third-

grade nanofluids on a stretchy, pervious plate with convective heating was explained in detail by Khan et al. 

(2015). Through entropy optimization, Deebani et al. (2020) demonstrated the Hall effect on radiative Casson 

fluid flow via a chemical reaction over a spinning cone. Al-Khaled and Khan (2020) examined the temperature-

dependent viscosity and other thermal characteristics of a Casson nanofluid that contained microorganisms. A 

few pertinent questions on fluid flow and mass transfer over stretched surfaces can be found in (Eid and Mahny 

2017, Reddy et al. 2018, Bhatti et al. 2018). 

In light of the preceding discourse, the aim of the current research pertaining to the Maxwell fluid model is to 

delineate the characteristics of non-Newtonian fluid behavior and to scrutinize the influence of velocity slip and 

mass transfer in magnetohydrodynamic (MHD) upper-convected Maxwell (UCM) fluid flow in the proximity of 

the stagnation point adjacent to a stretched permeable sublayer. The examination of mass transfer across 

permeable surfaces holds substantial importance due to its extensive practical applications. The prior studies are 

grounded in the continuous physical properties of the fluid. The present flow problem is formulated as non-linear 

ordinary differential equations through the application of suitable similarity transformations and is subsequently 

solved using the Successive Linearization Method (SLM), yielding significant numerical results (Bhatti et al. 

2018, Bhatti et al. 2016, Anwar et al. 2017, Anwar et al. 2018). The methodology currently employed has 
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demonstrated considerable efficiency and exhibits a rapid convergence rate relative to various numerical 

approaches. The effects of the governing physical parameter quantities of interest are illustrated through graphical 

representations and are discussed in detail. 

Mathematical Formulation 

 

Let us examine the incompressible, steady stagnation point flow of an upper-convected Maxwell (UCM) fluid 

that is constrained by a stretched sheet on the specified domain �̅� = 0. The flow encompasses the defined range 

�̅� > 0. An external magnetic field 𝐵0 is applied in a direction transverse to the flow, while the electric and 

induced magnetic fields are rendered negligible due to the minimal magnetic Reynolds number. Furthermore, the 

factors influencing mass transfer are also considered. Mass transfer pertains to the flow that incorporates the 

species A and B, which are only sparingly soluble in the fluid. The concentrations at the surface of the sheet 

�̃�𝑤, and the solubility of the species in the fluid are delineated, while the concentrations away from the sheet �̃�∞, 

are noted, alongside the reaction rate 𝑘1 . The velocity magnitudes at the stagnation point are �̅� = 0, �̅� = 0 

presented as specified. 

The velocity magnitudes of the stagnation point are furnished as 

 
Figure 1. shows the coordinate system and flow problem geometry. 

 

�̃�𝑒(�̅�) = 𝑎�̅�,   �̃�𝑒(�̅�) = 𝑎�̅�,  

(1)  

Here the constant 𝑎 > 0 is proportionality to the free stream velocity apart through the stretched sheet. The 

consequent boundary layer equations are 

∂�̃�

∂�̅�
+

∂�̃�

∂�̅�
= 0,  

(2) 



Journal of Technology Innovations and Energy                                                            

 

Global Scientific Research  47 

 

�̃�
∂�̃�

∂�̅�
+ �̃�

∂�̃�

∂�̅�
+ 𝜆𝐴 {�̃�2

∂2�̃�

∂�̅�2
+ 2�̃��̃�

∂2�̃�

∂�̅� ∂�̅�
+ �̃�2

∂2�̃�

∂�̅�2} = 𝜈
∂2�̃�

∂�̅�2
+ 

 �̃�𝑒

𝑑�̃�𝑒

𝑑�̅�
−

𝐵0
2𝜎

𝜌
[�̃� − �̃�𝑒 + 𝜆𝐴�̃�

∂�̃�
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(3)  

�̃�
∂�̃�

∂�̅�
+ �̃�

∂�̃�

∂�̅�
= �̅�𝐵

∂2�̃�

∂𝑦2
− 𝑘1(�̃� − �̃�∞),  

(4) 

The corresponding BCs are 

�̃� = �̃�𝑤(�̅�) + 𝐿1

∂�̃�

∂�̅�
= 𝑑�̅�, �̃� = −�̃�𝑤, , �̃� = �̃�𝑤  on �̅� = 0,   

(5) 

�̃� = 𝑎�̅�, �̃� = �̃�∞ 𝑎𝑡 �̅� → ∞.  

(6) 

In the above equations �̃�, �̃� are the velocity constituents alongside the �̅� and �̅�-axis, the relaxation time 𝜆11, 

the mass diffusion �̅�𝐵, the concentration field �̃�, 𝑑 is the stretching rate, and the reaction rate 𝑘1. It is referred 

(Hayat et al. 2009, Anwar 2020) that the extra expression 
𝐵0

2𝜎

𝜌
[−�̃�𝑒 + 𝜆1�̃�

∂�̃�

∂�̅�
] is in the momentum equation. 

This investigation embodies alike deduction to the MHD two-phase MHD Maxwell fluid flow in the flourishing 

explorations. 

Defining (Pahlavan et al. 2009, Anwar 2020) 

�̃� = 𝑑�̅�𝐺′(𝜂),   �̃� = −√𝑑𝜈 𝐺(𝜂), 𝜂 = √
𝑑

𝜈
 �̅�, 𝜙(𝜂) =

�̃� − �̃�∞

�̃�𝑤 − �̃�∞

. 

(7)  

where a and d have dimensional reciprocals of time and are positive constants. Equation (2) is similarly satisfied, 

and Equations (3)–(6) lead to; 

 

𝐺  ′′′ + {𝑀𝛽1 + 1}𝐺𝐺  ′′ − 𝐺  ′2
+ 𝛽1{2𝐺𝐺  ′𝐺  ′′ − 𝐺2𝐺  ′′′} − 𝑀(𝐺′ − 𝛼) − 𝐾𝐺′  + 𝛼2 = 0,, 

(8)  

𝜙′′ + 𝑆𝑐𝐺𝜙′ − 𝑆𝑐𝐾𝑐𝜙 = 0, 

(9)  

The associated boundary conditions are 

𝐺  ′(𝜂) = 1 + 𝜆1𝐺  ′′(𝜂), 𝐺(𝜂) = 𝑆, 𝜙(𝜂) = 1,    on  𝜂 = 0, 

(10)  

𝐺  ′(𝜂) = 𝛼, 𝜙(𝜂) = 0,           𝑎𝑠 𝜂 → ∞, 

(11)  

Where S =
−�̅�0

√𝑎𝜐
, 𝜆1 = 𝐿1√

𝑑

𝜈
 , 𝐾 =

𝜐

�̅�𝑑
, 𝑀 =

𝜎�̅�0
2

𝜌𝑑
, 𝛽1 = 𝜆𝐴𝑑, 𝛼 =

𝑎

𝑑
, 𝑆𝑐 =

𝜐

𝐷𝐵
 and 𝐾𝑐 =

𝑘1

𝑑
, are the suction, 

velocity slip parameter, porosity parameter, magnetic parametric quantity, Deborah number, Schmidt number, 

and chemical reaction parametric quantity respectively. Further, 𝐾𝑐 > 0 or 𝐾𝑐 < 0 stands for destructive or 

generative chemical reactions, whereas 𝐾𝑐 = 0 stands for non-reactive species. 
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Physical quantities  

 

Surface skin friction coefficient 𝐶𝐺 and local Sherwood number 𝑆ℎ�̅� are described as 

𝐶𝐺 =
2𝜏𝑤

𝜌�̃�𝑤
2 , 𝑆ℎ�̅� =  

�̅�𝑗𝑤

𝐷𝐵(�̃�𝑤 − �̃�∞)
  , 

(12)  

Where 𝜏𝑤, the wall shear stress, and 𝑚𝑤 mass flux are presented below 

𝜏𝑤 = 𝜇 (
𝜕�̃�

𝜕𝑦̅̅̅̅
)

�̅�=0

, 𝑚𝑤 = −𝐷𝐵 (
𝜕�̃�

𝜕𝑦̅̅̅̅
)

�̅�=0

 

(13)  

Emplacing Eq. (13) in Eq. (12), gives 

1

2
𝐶𝐺√𝑅𝑒�̅� = 𝐺  ′′(0),

𝑆ℎ�̅�

√𝑅𝑒�̅�

= −𝜙′(0) 

(14)  

Here 𝑅𝑒�̅� is the local Reynolds number. 

Numerical Technique 

 

We implement the Successive Linearization Method (SLM), assuming the expansion (Bhatti et al. 2016, Anwar 

et al. 2017) given as 

 

𝐺(𝜂) = 𝐺ｉ(𝜂) + ∑ 𝐺ｎ(𝜂),ｉ−1
ｎ=0  (ｉ = 1,2,3, … ),                     (15)  

 

Where 𝐺ｉ is the undetermined function to be achieved iteratively. Presuming the earliest hypothesis "𝐺0” of the 

mode  

 

𝐺0 = 𝑆 + 𝛼𝜂 +
1

1+𝜆1
̅̅ ̅̅ ̅̅ ̅ (1 − 𝑒−𝜂).                        (16)  

 

We write Eq. (8) as  

 

Ｌ = 𝐺′′′ − 𝑀(𝐺′ − 𝛼) − 𝐾𝐺′,                             (17) 

and  

Ｎ = {𝑀𝛽1 + 1}𝐺𝐺  ′′ + β1{2𝐺𝐺  ′𝐺  ′′ − 𝐺2𝐺  ′′′} − (𝐺′)2 + 𝛼2,                (18) 

 

Ｌ, Ｎ are the linear and non-linear segments. By replacing Eq. (15) in Eq. (8) and conceding the linear segment, 

arrive at 

𝐺ｉ
′′′ +ｃ0,ｉ−1𝐺ｉ

′′′ +ｃ1,ｉ−1𝐺′
ｉ
′

+ｃ2,ｉ−1𝐺ｉ
′ − [𝑀 + 𝐾]𝐺ｉ

′ +ｃ3,ｉ−1𝐺ｉ 

+𝑀𝛼 = ｒｉ−1,                       (19) 

 

The respective boundary conditions become  

 

𝐺ｉ(0) = 0 =  𝐺ｉ
′ (0) + 𝜆1𝐺′ｉ

′ − 1 = (0) = 𝐺ｉ
′ (∞).                  (20) 
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Eq. (19) is solved through the Chebyshev spectral collocation technique. The conversion of a physical part 

towards a finite part [−1,1] is brought by applying transformation of the following form;  

 

Γ =
2𝜂−1

Θ
.     

                                       (21) 

The [−1,1] is discretized. To make the nodal-points into [−1,1], the Gause-Lobatto collocation is utilized i.e. 

 

Γ𝐼 = cos
𝜋𝑖

ｎ
,  (𝐼 = 0,1, … 𝑁).                                                              (22) 

 

Holding (𝑁 + 1) collocation points. The differential matrix “D" is the basic theme fundaments of this scheme. 

Pursuing a differential matrix is further mapping into a vector function 𝛨(= [𝐺(Γ0), … , 𝐺(Γｎ)]𝑻) .  The 

collocation points are specified as  

 

𝛨′ = ∑ 𝐃𝐾𝑖𝐺(Γ𝐾) = 𝐃𝛨,𝑁
𝐾=0                    (23) 

 

the function 𝐺(Γ) for the 𝑞𝑡ℎ order derivatives are described as  

 

𝐺𝑞(Γ) = 𝐃𝑞𝛨.                       (24) 

 

The matrix “D” is computable utilizing alike strategy conferred by Bhatti et al. (Bhatti et al. 2016, Anwar et al. 

2017). Now, the spectral collocation method is employed on linearized Eqs. (19)-(20), arrive at 

 

𝐁ｉ−1𝛨ｉ = 𝐑ｉ−1,                      (25) 

 

The boundary conditions become  

 

𝐺ｉ(Γ𝑁) = 0, ∑ 𝐃𝑁𝐾𝐺ｉ(Γ𝐾) = 0,𝑁
𝐾=0 ∑ 𝐃𝟎𝐾𝐺ｉ(Γ𝐾) = 0,𝑁

𝐾=0 ∑ 𝐃𝟎𝐾
𝟐 𝐺ｉ(Γ𝐾) = 0,𝑁

𝐾=0               (26) 

 

And 

 

𝐁ｉ−1 = 𝐃𝟑 +ｃ0,ｉ−1𝐃𝟑+ｃ1,ｉ−1𝐃𝟐 +ｃ2,ｉ−1𝐃 − (𝑀 + K)𝐃 +ｃ3,ｉ−1 + 𝑀𝛼.               (27) 

where 𝑏𝕤,ｉ−1(𝕤 = 0,1, … 3) are (𝑁 + 1) × (𝑁 + 1) diagonal matrices along the main diagonal 𝑏𝕤,ｉ−1(Γ𝑁),  

 

we have 

𝛨ｉ = 𝐺ｉ(Γ𝐼), 𝐑ｉ−1 = 𝑟ｉ(Γ𝐼).  (𝐼 = 0,1,2,3, … 𝑁).                 (28) 

 

The solutions for 𝐺ｉ  are attained using Eq. (25) and Eq. (26). Anymore Eq. (9) become linearized, thus 

Chebyshev pseudo-spectral method is straightforwardly applied, reaching at 

 

𝔹 = ℍ−1𝕊,                        (29) 
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𝜙(Γ𝑁) = 1, 𝜙(Γ0) = 0,                                          (30) 

 

𝔹 = 𝐃𝟐 + 𝑆𝑐𝐺𝐃 − 𝑆𝑐𝐾𝑐                      (31)  

 

where ℍ = 𝜙(Γ𝐼). The vectors of zeros are defined by 𝕊, and Eqs. (31) is further transformed into the diagonal 

matrices. Eq. (30) is employed over the foremost and last row of 𝔹, and 𝕊, subsequently. 

 

 
Figure 2: Process flow diagram for generating numerical results 

 

Numerical results and consultation 

 

This segment anticipates the estimated outcomes for the overall parameters contained within the governing 

equations. The Matlab software has been employed to investigate the anomalies regarding the overall efficacy of 

the significant parametric variables through numerical analysis. Figures 3-16 are presented to illustrate the 

significant parametric variables concerning flow profiles, subsequently. In Figures 3-4, the fluctuation in M with 

respect to velocity and concentration distribution is depicted and documented, revealing that velocity substantially 

decelerates and diminishes the boundary layer thickness, while concurrently augmenting the concentration 

magnitudes by increasing the values in M. Through Figures 5-6, the modification in the parameter 𝛽1 for velocity 

and concentration distribution is illustrated and recorded, indicating that velocity significantly decelerates and 

elevates the boundary layer thickness, However, it enhances the concentration magnitudes by increasing the 

values in the parameter 𝛽1. In Figures 7-8, the variation in the parameter 𝛼 for velocity and concentration 

distribution is depicted and observed, demonstrating that the velocity field considerably increases and enhances 

the boundary layer thickness, while simultaneously reducing the concentration magnitudes by elevating the values 
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in the parameter 𝛼 . Through Figures 9-10, for the distant numeric in the parameter 𝐾 , the velocity and 

concentration distribution are portrayed and revealed, indicating that velocity remarkably decelerates, while the 

concentration magnitudes are enhanced by augmenting the values in the parameter 𝐾. We ascertain through 

Figures 11-12 that the variation in the parameter 𝑆 exceptionally decelerates both the velocity and concentration 

distribution, while also enhancing the boundary layer thickness for elevated amounts in the parameter 𝑆. Figure 

13 is employed to elucidate the influence of 𝜆1 on the function 𝐺  ′(𝜂)profile. It has been determined that 𝐺  ′(𝜂) 

exhibits a noteworthy decline with the elevation of 𝜆1 values. From a physical standpoint, as the velocity slip 

parameter escalates, it denotes an augmented slip velocity at the fluid-solid interface, wherein the fluid molecules 

experience diminished interaction with the solid surface. Consequently, the transfer of momentum between the 

fluid and the solid surface is attenuated, resulting in a reduction of the velocity profile. 

The influence of 𝑆𝑐 and 𝐾𝑐 on species concentration is shown in Figure 14-16, where both parametric quantities 

𝑆𝑐 and 𝐾𝑐, slow down the concentration and decelerate the concentration boundary layer thickness. The chemical 

reaction parameter 𝐾𝑐 has a remarkable effect on concentration at the point of chemical reaction that benefits 

the interface mass transfer; the species concentration decreases for 𝐾𝑐 gets large values as being demolishing 

chemical recedes; by increasing 𝐾𝑐, the concentration magnitudes recorded to be increased for (𝐾𝑐 < 0), and it 

decelerates for (𝐾𝑐 > 0). It is important to note that the variation observed for (𝐾𝑐 < 0) is significant in 

comparison to the variation for (𝐾𝑐 > 0).  

 

 
Figure 3: Velocity magnitude for M. 
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Figure 4: Concentration magnitude for M. 

 
Figure 5: Velocity magnitude for 𝛽1. 
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Figure 6: Concentration magnitude for 𝛽1. 

 
Figure 7: Velocity magnitude for 𝛼. 
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Figure 8: Concentration magnitude for 𝛼. 

 
Figure 9: Velocity magnitude for 𝐾. 
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Figure 10: Concentration magnitude for 𝐾. 

 

Figure 11: Velocity magnitude for 𝑆. 
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Figure 12: Concentration magnitude for 𝑆. 

 

Figure 13: Velocity magnitude for 𝜆1. 
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Figure 14: Concentration magnitude for 𝑆𝑐. 

 

Figure 15: Concentration magnitude for 𝐾𝑐 ≥ 0. 
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Figure 16: Concentration magnitude for 𝐾𝑐 < 0. 

 

To evaluate the precision of the numerical methodology employed, the results are juxtaposed with the extant 

literature provided by Pahlavan et al. 2009 and Anwar 2020. It has been noted that the results yielded by the SLM 

method exhibit a higher degree of accuracy as delineated in Table 1.  

Table 1: Comparison of current results of 𝐺  ′′(0) and −𝜙′(𝜂) with the previous investigations across 𝑆𝑐 and 

𝐾𝑐 by fixing 𝑀 = 1, 𝛽1 = 𝛼 = 0.2, 𝐾 =  𝑆 = 𝜆1 = 0 . 

 

𝑆𝑐 𝐾𝑐 Current Results for 

𝐺  ′′(0) 

Pahlavan et 

al. 2009 and 

Anwar 2020 

Current Results 

for −𝜙′(𝜂)  

Pahlavan et al. 

2009 and 

Anwar 2020 

1 1 1.272470 1.272470  1.167862 1.16786 

1.2 1   1.284681 1.28468 

1.5 1   1.443482 1.44348 

1 1.2   1.252273 1.25227 

1 1.5   1.368854  1.36885 

 

Conclusion 

 

The present investigation elucidates the effects of velocity slip and mass transfer on the flow of MHD upper-

convected Maxwell (UCM) fluids over a stretched permeable plate near the stagnation point. The governing 

partial differential equations associated with the flow issue are transformed into ordinary differential equations 

through the application of similarity transformations. The numerical results for the ascending non-linear boundary 
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value problem are ascertained through the execution of the Successive Linearization Method (SLM) utilizing 

Matlab software. The subsequent observations are documented as follows: 

The alteration in M for the velocity distribution significantly retards while simultaneously amplifying the 

concentration magnitude.  

• The alteration in 𝛽1  decelerates the velocity profile, although intensifying the concentration 

magnitudes.  

• The alteration in 𝛼 markedly increases the velocity magnitudes while concurrently decelerating the 

concentration magnitudes.  

• An increase in numeric in 𝐾  results in a deceleration of the distribution while enhancing the 

concentration magnitudes.  

• By augmenting 𝑆, there is a notable deceleration in both velocity and concentration distributions. 

• The concentration magnitudes progressively decelerate across both parametric quantities 𝑆𝑐 and 𝐾𝑐. 

• The concentration field exhibits contradictory behavior across ((𝐾𝑐 > 0) and (𝐾𝑐 < 0). 

• Slip conditions pertain to the differential motion or velocity disparity between the fluid and the boundary 

at the interface of fluid and solid. The examination of various slip phenomena can yield numerous 

implications across diverse disciplines: microfluidics, nanofluidics, transport in porous media, tribology, 

thin liquid films, biological systems, aerospace, and aeronautics, among others. The subsequent points 

are duly noted.  
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